
Sponsor Award #NA02-1472 

Final Report 
Effective Team Support: From Modeling to Software Agents 

Submitted by 

Carnegie Mellon University 
5000 Forbes Avenue 
Pittsburgh, PA 1521 3 

Principal Investigator: Bonnie John (41 2) 268-4469 

Co-Investigator: Katia Sycara (41 2) 268-8825 

bel @ cs. cm u. edu 

katia @cs .cmu.edu 



Effective Team Support: From Modeling to Software Agents 1 

1. Abstract 
The purpose of this research contract was to perform multidisciplinary research 

between CMU psychologists, computer scientists and engineers and NASA researchers 
to design a next generation collaborative system to support a team of human experts 
and intelligent agents. To achieve robust performance enhancement of such a system, 
we had proposed to perform task and cognitive modeling to thoroughly understand the 
impact technology makes on the organization and on key individual personnel. Guided 
by cognitively-inspired requirements, we would then develop software agents that 
support the human team in decision making, information filtering, information distribution 
and integration to enhance team situational awareness. During the period covered by 
this final report, we made substantial progress in modeling infrastructure and task 
infrastructure. Work is continuing under a different contract to complete empirical data 
collection, cognitive modeling, and the building of software agents to support the teams’ 
task. 

1 Cognitive Modeling Infrastructure 
Cognitive modeling is a potentially powerful tool for predicting human interaction 

with computer systems (Pew and Mavor, 1998), but it has historically been a difficult 
and time-consuming task, requiring researchers with doctorates in psychology and/or 
computer science. As part of this research contract, we made substantial progress 
towards making cognitive modeling more accessible and tractable for modeling the 
knowledge required to operate complex systems. 

Our first effort was to implement a well-established modeling framework, called 
CPM-GOMS (John, 1990), in a cognitive architecture developed at NASA, called Apex 
(Freed, 1998). CPM-GOMS is a modeling method that combines the task 
decomposition of a GOMS analysis with a model of human resource usage at the level 
of cognitive, perceptual, and motor operations. CPM-GOMS models have made 
accurate predictions about skilled user behavior in routine tasks, but developing such 
models is tedious and error-prone. In the process of implementing CPM-GOMS in Apex, 
we discovered ways to automate some of the harder aspects of CPM-GOMS modeling. 
This breakthrough is documented in a CHI 2002 paper (John, Vera, Matessa, Freed, & 
Remington, 2002, reproduced in Appendix A) where we describe the process for 
automatically generating CPM-GOMS models from a hierarchical task decomposition 
expressed in Apex. Resource scheduling in Apex automates the difficult task of 
interleaving the cognitive, perceptual, and motor resources underlying common task 
operators (e.g. mouse move-and-click). Apex’s UI automatically generates PERT 
charts, which allow modelers to visualize a model’s complex parallel behavior. Because 
interleaving and visualization is now automated, it is feasible to construct arbitrarily long 
sequences of behavior. 

We further refined the theoretical ideas underlying our success in automating CPM- 
GOMS in a paper at the Cognitive Science Conference (Matessa, Vera, John, 
Remington & Freed, 2002, reproduced in Appendix B). In it, we explored the concept of 
reusable templates of common behaviors and their efficacy for generating zero- 



‘ I  

Effective Team Support: From Modeling to Software Agents 2 

parameter a priori predictions of complex human behavior. This paper detailed the 
features we believe are important when moving from hand-crafted models of particular 
tasks to reusable building blocks of commonly occurring behavior. As this becomes 
common practice, proportionately more attention can be paid to the task analysis 
specific to each new domain. We also taught a tutorial at the Cognitive Science 
Conference about how to use Apex for different types of predictive cognitive modeling: 
KLM, GOMS and CPM-GOMS (Remington, John, Vera, Matessa, Freed, Dalal, Harris & 
Dahlman, 2002). 

In addition to the theoretical progress, we also contributed to modeling infrastructure 
by supervising Carnegie Mellon University Masters of Human-Computer Interaction and 
Masters of Software Engineering project classes. The charge to the students was to 
“make a cognitive modeler’s life easier”. The students built prototypes of tools to 
visualize what complex cognitive models are doing, and also to build working tools for 
constructing simple interfaces with which the cognitive models interacted. The latter 
tools were sufficiently robust to be included in the CogSci2002 tutorial lecture and 
running code was distributed to the tutorial attendees. 

2 Task Infrastructure 
MORSE is being developed for NASA under a this contract, as a platform to explore 

team performance, software agents and cognitive modeling. MORSE is an environment 
for three team members, encompassing some of the challenges facing Range 
Operations at KSC. It is a distributed system that simulates a task performed by a team 
of three human operators, each being responsible for some aspect of ensuring that 
launching a space vehicle from KSC will not endanger the general populace. MORSE 
provides monitoring stations at Cape Canaveral (Figure l ) ,  Antigua and the Ascension 
Islands, where human operators track the progress of the mission in the 15 hours 
(scaled to be 15 minutes of real time in the simulation) prior to launch, and decide 
whether to abort or go ahead with the launch. To make this decision, the team must 
monitor weather and incursions (e.g., aircraft) that have entered an area bounded by 
launch impact lines. The overall team objective is to effect a safe launch, where no 
severe weather threatens the launch vehicle and no incursions are left within the impact 
lines at launch time. The human team has at its disposal weather balloons that can get 
current weather data, radars that allow the team members to see incursions in the areas 
covered by the radars, and interceptor vehicles that can be appointed to intercept 
incursions. Weather balloons, radars, and interceptor vehicles are shared resources 
that team members must acquire through coordination with each other and utilize for the 
performance of the team task, i.e. the safe launch, or abortion of a launch that is 
predicted to be unsafe. 

The MORSE task has several important features that make it suitable for the 
proposed research. It has many features in common with actual Range Operations, 
including uncertain data, predictions based on old data, a potentially heavy workload 
(e.g., many incursions), time pressure, and the necessity for communication between 
team members. Because it is based on a real NASA task, it includes individual 
performance issues important to NASA. These include judging the trajectory of a 



Effective Team Support: From Modeling to Software Agents 3 

moving object on a radar screen, extrapolating and interpolating from incomplete or 
uncertain data (to judge the weather), and communicating about a shared space. In 
addition, it incorporates important aspects of teamwork including varying task 
complexity, limited resources, and communication between team members in order to 
allocate resources and arrive at a team decision (to go ahead with the launch or not). 

In addition to the human performance aspects of the task, MORSE also has 
important technical features. MORSE was designed to be a very flexible platform for 
conducting team experiments, giving the experimenter extensive control over the 
scenarios seen by the team. Because it is fully instrumented, MORSE allows some 
direct measurement of collaboration success and failure (e.g., two team members 
attempting to escort the same incursion out of the impact area), as well as more 
traditional measures of individual and team performance. MORSE'S architecture makes 
it easy to incorporate software agents into the task. It also communicates with cognitive 
modeling architectures making it easy to do GOMS modeling in Apex [6] or learning 
models in ACT-R [l]. It presents the same information and control opportunities to 
cognitive models as it does to human participants, logs behavior from both as well as 
any software agents, and allows playback, making analysis of data as easy as possible. 

Figure 1 . The display for a MORSE team member, whose base stati on is 
located at Cape Canaveral. Each team member sees a similar 
display, showing a different base station and view of the map. 

3 Ongoing work 
The work described in this final report is on-going at CMU and NASA Ames 

Research Center. Data collection of teams performing the MORSE task will begin in the 
Fall of 2003, and cognitive modeling and software agent construction will follow. 
Evaluation of the effectiveness of software agents to support team performance, with 
and without input from the cognitive models has been proposed. 

4 References 
1 . Freed, M . (1 998) Simulating Human Performance in Complex, Dynamic 

Environments. Doctoral Dissertation, Northwestern University. 



Effective Team Support: From Modeling to Software Agents 4 

2. John, B. E. (1 990) Extensions of GOMS analyses to expert performance requiring 
perception of dynamic visual and auditory information. In Proceedings of CHI, 1990 
(Seattle, Washington, April 30-May 4, 1990) ACM, New York, 107-1 15. 

CPM-GOMS. Proceedings of CHI, 2002 (Minneapolis, April 20-25,2002) ACM, New 
York. 

4. Matessa, M. Vera, A., John, B. E., Remington, R., & Freed, M. (2002) Reusable 
templates in human performance modeling. Proceedings of the Twenty-Fourth 
Annual Conference of the Cognitive Science Society, August 2002. 

5. Pew, R. W, & Mavor, A. S. (1998) Modeling Human and Organizational Behavior: 
Application to Military Simulations. Panel on Modeling Human Behavior and 
Command Decision Making: Representations for Military Simulations. Washington, 
DC: National Academy Press. 

6. Remington, R. John, B. E., Vera, A., Matessa, M., Freed, M., Dalal, M., Harris, R., & 
Dahlman, E. (2002) ApexICPM-GOMS: Modeling human performance in applied 
HCI domains. Tutorial materials presented at the Twenty-Fourth Annual Conference 
of the Cognitive Science Society, August 2002 

3. John, B., Vera, A., Matessa, M., Freed, M., & Remington, R. (2002) Automating 



Effective Team Support: From Modeling to Software Agents 

Appendix A: 

John, B., Vera, A., Matessa, M., Freed, M., & Remington, R. (2002) Automating 
CPM-GOMS. Proceedings of CHI, 2002 (Minneapolis, April 20-25,2002) ACM, New 
York. 



minneapolis, minnesota, usa 20-25 april2002 Paper: Controlling Complexity 

Automating CPM-GOMS 

Bonnie John', Alonso Vera2, Michael Matessa2, Michael Freed?, and Roger Remington' 

'Human-Computer Interaction Institute 
Carnegie Mellon University 

5000 Forbes Ave., Pittsburgh, PA 
+1412 268 7182 
bej @cs.cmu.edu 

ABSTRACT 
CPM-GOMS is a modeling method that combines the task 
decomposition of a GOMS analysis with a model of human 
resource usage at the level of cognitive, perceptual, and 
inotor operations. CPM-GOMS models have made accurate 
predictions about skilled user behavior in routine tasks, but 
developing such models is tedious and error-prone. We 
describe a process for automatically generating CPM-GOMS 
models from a hierarchcal task decomposition expressed in a 
cognitive modeling tool called Apex. Resource scheduling in 
Apex automates the difficult task of interleaving the 
cognitive, perceptual, and motor resources underlying 
common task operators (e.g. mouse move-and-click). Apex's 
UI automatically generates PERT charts, which allow 
modelers to visualize a model's complex parallel behavior. 
Because interleaving and visualization is now automated, it is 
feasible to construct arbitrarily long sequences of behavior. 
To demonstrate the process, we present a model of automated 
teller interactions in Apex and discuss implications for user 
modeling. 

Keywords 
GOMS, Apex, TasWser Modeling, Tool Support for 
{Jsability Evaluation. 

INTRODUCTION AND MOTIVATION 
One of the difficulties in developing human interfaces to 
complex systems is anticipating the response of users to the 
large space of possible system states and design options. 
Even extended empirical user testing can fail to uncover 
serious difficulties. It would be useful to have a 
computational representation of the user that would allow the 
designer to simulate user responses to a variety of situations 
and design options. Though the field is far from having a 
complete model of the user, several computational modeling 
approaches have been successful in making accurate 
predictions of user choices as well as task completion times 

'MS 262-4 
NASA Ames Research Center 

Moffett Field, CA 94035 
+1650 604 6294 

avera@arc.nasa.gov 

(e.g., [15, 25, 29, 31, 321). Of the several architectures 
available to model human users, the Goals, Operators, 
Methods, and Selection (GOMS) method [6,21] has been the 
most widely used, providing accurate, often zero-parameter, 
predictions of the routine performance of skilled users in a 
wide range of procedural tasks [6, 13, 15,27,28]. 
GOMS is meant to model routine behavior. The user is 
assumed to have methods that apply sequences of operators 
and to achieve a goal. Selection rules are applied when there 
is more than one method to achieve a goal. Many routine 
tasks lend themselves well to such decomposition. 
Decomposition produces a representation of the task as a set 
of nested goal states that include an initial state and a final 
state. The iterative decomposition into goals and nested 
subgoals can terminate in primitives of any desired 
granularity, the choice of level of detail dependent on the 
predictions required. 
Although GOMS has proven useful in HCI, tools to support 
the construction of GOMS models have not yet come into 
general use. Several tools have emerged from the research 
world, e.g., QGOMS [3], CATHCI [30], GLEAN [24]. All of 
these tools aid the modeler to some extent, but all have 
drawbacks that prevent them from being heavily used in 
design practice today [2]. In addition, none of them automate 
any part of the modeling process. However, limited 
demonstrations of the potential for automating some portions 
ofGOMS modeling have been made [4, 16,261. 
We extend these promising directions with a tool that 
automates part of the GOMS modeling process using an 
existing computational archtecture, Apex [9, 101. Our work 
differs from that of our predecessors because Apex served not 
only as an implementation platform but provided new insights 
into GOMS modeling itself In addition, the previous work 
focused on the higher-level members of the GOMS modeling 
family (KLM, CMN-GOMS and NGOMSL; [21]) whereas 
our use of Apex emphasizes the lowest-level GOMS 
modeling technique (CPM-GOMS) Employing reusable Copynght 2001 Association for Computing Machinery ACM acknow- 

ledges that tlus contnbution was authored or co-authored bv a contractor or templates of behavior, our tool allows the to specify 
I 

affiliate of the U.S. Government. AS such, the ~ v e m m e n t  retains a procedural knowledge at a task-level and automates the - 
nonexclusive, ~ a l t y - f m  right to pubhsh or reproduce h s  lutlcle, or to 
aUow others to do so, for Government p q o s e s  only 
CHI 2002, Apnl20-25, 2002, Minneapolis, Minnesota, USA 

translation of that knowledge into interleaved cognitive, 
perceptual and motor operators 

Copynght 2002 ACM 1-581 13-453-3/02/0004 $5 00 

Volume No. 4, Issue No. 1 147 



Paper: Controlling Complexity 

The next section will introduce key aspects of CPM-GOMS 
and the procedure for constructing such models by hand. 
Then we will describe Apex, the insights it afforded, and the 
procedure for constructing a CPM-GOMS model with that 
tool. Finally, we will present an example use of the tool and a 
comparison of the resulting CPM-GOMS model to user data. 

John & Kieras [21] described four varieties of GOMS 
modeling techniques. Three make the assumption that all 
operators occur in sequence and usually do not contain 
operators below the activity level (e.g., type-string, move- 
and-click-mouse). These three are the original formulation by 
Card, Moran and Newell [S, 61 termed CMN-GOMS, the 
Keystroke-Level Model (IUM) also formulated by Card 
Moran and Newell [6], and NGOMSL [23]. The fourth, 
called CPM-GOMS [17, 181, uses operators at the level of 
the Model Human Processor OMHp, [6]) and assumes that 
operators of the cognitive processor, perceptual processor, 
and the motor processor can work in parallel to each other 
subject to information-flow constraints. The first three 
techniques have been supported by research tools for about a 
decade, where modelers can draw hierarchical goal 
decomposition in a tree diagram (QGOMS, [SI), program it 
in a dedicated programming environment (GLEAN, [24]) or 
even automatically generate most of the model simply by 
demonstrating a task (CRITIQUE, [ 161). 
IJnlike the first three GOMS methods, CPM-GOMS human 
performance predictions are constructed from primitives that 
include estimates of the time for the elementary cognitive, 
motor, and perceptual operations. These primitives are 
hypothesized to underlie actions such as typing a key or 
moving a mouse. Much of the power of CPM-GOMS to 
predict skilled behavior comes from its ability to model 
overlapping actions by interleaving cognitive, perceptual, and 
motor operators. Although it could be argued that CPM- 
GOMS has been the most economically successhl of the 
O M S  methods (saving a telephone company $2 million per 
year [ 1 SI), it has had no dedicated tool support to date. 

Crafting CPM-GOMS Models by Hand 
CPM-GOMS models have traditionally been expressed in 
PERT charts, a representation familiar to project managers. 
Every operator is represented as a box (a task) with a duration 
(in milliseconds). If an operator must have information that is 
the output of another operator, then it is said to be dependent 
on that operator and must wait for it to complete before 
starting itself. Likewise, if two operators use the same 
processor of the M H P  (e.g., cognitive processor, vision, or 
the right hand), one must wait for the previous to complete 
before starting. Thus, a CPM-GOMS model of a user’s task 
consists of boxes with durations and dependency lines 
between them. Figure I shows a model of a person carefully 
moving a mouse to a target on the screen and clicking on that 
target. 

CONSTRUCTING CPM-GOMS MODELS 

CHI 2m2 changing the world, changing ourselves 

-1 

- Y  El 
Figure 1 : Model of carefully the cursor to a target and 

clicking the mouse button (adapted from [l 11). 

Procedure for constructing a CPM-GOMS model with 
MacProject 
Models were created using MacProject, a project 
management tool originally produced by Apple, improved by 
Clark, and no longer commercially available. The key feature 
of MacProject that made it possible for CPM-GOMS models 
to be constructed is that pre-established patterns of operators 
could be stored in a library file and then copy-and-pasted into 
a new canvas, preserving all relevant information about the 
patterns (e.g., duration, dependencies, position on the page). 
These patterns, which we called “templates” [20], were of 
commonly recurring task-level activities in HCI. Each 
template was very short, some encompassed just a fraction of 
a second and others were up to several seconds. Templates 
exist for HCI tasks including typing, visually getting 
information from a screen (with or without eye-movements), 
pressing a single key, having a short conversation, etc. The 
pattern shown in Figure 1 for selecting a target is an example 
of a template. 
To build a CPM-GOMS model, the modeler would start with 
a herarchical goal decomposition, usually in the form of a 
CMN-GOMS model. This goal decomposition would 
continue until the leaves formed a sequence of keystroke- 
level activities necessary to complete the task. After 
completing the goal decomposition, the modeler would 
choose the templates that achieve the activities and copy and 
paste them into a blank workspace. The modeler then drew 
dependency lines between operators from adjoining templates 
that use the same processor, i.e., from one template’s last 
cognitive operator to the next template’s first cognitive 
operator, etc. Since each template was on the order of a 
second long, an interesting model would include scores of 
templates and be comprised of hundreds of MHP-level 
operators and their dependencies. 
After copying the appropriate templates into the model, each 
operator in each template had to be given a unique name to 
allow the modeler to keep track of the model as they scrolled 
through many screens of MacProject. Furthermore, the 
modeler had to remember to fill in durations for some of the 

148 $& Volume No. 4, Issue No. 1 



minneapolis, minnesota, usa 20-25 april2002 Paper: Controlling Complexity 

operator-boxes because the actual duration of the operator 
varied with the task situation. Many modelers, novice and 
experienced alike, missed an operator or two in this step, an 
error that propagates and exacerbates problems throughout 
the rest of the modeling process. 

After all templates are copied in, joined together serially, and 
customized to the task being modeled, they form a complete 
PERT chart for the task and MacProject displays the critical 
path (longest path) for task. At this point, the activities 
embodied in the templates are modeled as occurring in strict 
sequence. CPM-GOMS gets it predictive power by breaking 
the assumption of seriality thereby modeling the ability of 
highly skilled people to think ahead to the next step while 
completing the current step, essentially doing several things 
in parallel. To get this effect in CPM-GOMS models, at every 
juncture between two templates, the modeler had to consider 
whether to literally break the dependency line drawn in 
earlier, put an operator ahead of another operator, and 
reconnect the dependency lines appropriately. A f i l l  set of 
rules to dictate this step has never been articulated. The first 
consideration was whether there was sufficient slack time in 
the critical path to insert an operator belonging to a later 
template between two operators of the current template. 
However, deciding when it was appropriate to take advantage 
of that slack time was more of a craft than an engineering 
science, involving knowledge of the critical path, the task 
being modeled, psychology, and intuition. Furthermore, the 
breaking and reconnecting of scores of dependency lines also 
usually resulted in some errors of omission, which greatly 
affected the critical path of the final model. 
Although a prose description does not do justice to the 
procedure, the previous paragraphs attempt to convey that 
crafting CPM-GOMS with MacProject was difficult, labor- 
intensive, tedious and error-prone. Add to this the fact that 
MacProject was not designed for tasks at the millisecond 
level (the modeler had to work in minutes and do time 
conversion and it did not have a big enough canvas for long 
tasks) and the process was also frustrating. Even experienced 
modelers would take hours to model each minute-long task 
and then put the model away for a few days and revisit it with 
“new eyes” to find the errors and inconsistencies. The 
resulting accuracy of the models, their predictive power, and 
the eventual clarity of presentation was worth the effort 
through several projects, but the process was always painful. 

Automatically Generating CPM-GOMS Models with Apex 
Apex is a computational architecture used to model human 
behavior in complex dynamic tasks. It incorporates a reactive 
planner [SI providing capabilities that are a superset of those 
needed to build GOMS models [ l l ] .  These capabilities 
allowed us to map the concepts of CPM-GOMS to those of 
Apex and implement CPM-GOMS models directly in Apex. 

The Apex architecture 
Resources. The Apex architecture includes the concept of 
resources, which map directly to the MHp’s processors, and 
hence to CPM-GOMS models. Resources operate serially 

within themselves and are thereby occupied by a single task 
for the duration of that task. Apex currently has memory, 
vision, gaze, and righdlefi hand resources that map to the 
MHp’s cognitive, perceptual, and motor processes. It also has 
facilities for including more resources as needed by more 
complex tasks. Apex allocates these resources and others to 
the tasks it is attempting to execute. 
Hierarchical goal decomposition. The herarchical goal 
structure of a GOMS model can be expressed in Apex with 
its Procedure Description Language (PDL). In PDL, a 
procedure (GOMS method) consists of a number of steps. 
PDL steps are decomposed hierarchically into procedures of 
simpler steps until those steps bottom out in primitive actions 
(GOMS operators) that occupy resources. The decision to 
perform a particular procedure is mediated by a selection 
operator (GOMS selection rules). The PDL language is 
similar to the implementation of NGOMSL in GLEAN [24]. 
However, PDL is closer in philosophy to CMN-GOMS in 
that it assigns no time to goal manipulation, only the 
execution of operators. 
Step ordering. In PDL, steps can be assigned a strict serial 
ordering (like CMN-GOMS or NGOMSL) by explicitly 
setting the precondition of one step to be the completion of 
the preceding step. However, the Apex architecture also 
supports parallelism because if no explicit “waitfor” 
precondition is assigned, steps can run in parallel (subject to 
resource constraints). This default assumption of parallel 
activity is essential to CPM-GOMS models. Apex has a third 
possibility for ordering steps called priorities. In PDL, steps 
can be assigned a priority. When the step contends for use of 
a resource, its priority is compared to the priorities of other 
steps also contending for the same resource, and the task with 
the highest priority wins the resource. In terms of CPM- 
GOMS, this allows a sort of soft ordering of templates; task 
T2 should go after task TI unless T1 is not using the resource 
required by T2, in which case T2 can take it. 
Time assignment. Primitive actions are assigned durations 
that can be constants or a function of the environment. For 
example, the mouseDn action in Figure 1 is assigned an 
empirically determined value of 100 ms, while the move- 
cursor action is assigned a time calculated by Fitts’s Law. 
The overall time to run several such actions is calculated by 
Apex, which takes into account when the actions start and 
what actions may be running in parallel at any particular time. 

Expressing CPM-GOMS Templates in PDL 
CPM-GOMS templates can be straightforwardly expressed in 
PDL. For example, the PERT chart template shown in Figure 
1 is expressed in PDL in Figure 2.  Each box (operator) in 
Figure 1 is a step in PDL, labeled “c” for cognitive, “p” for 
perceptual, and “m” for motor. Dependency lines that go 
between rows are expressed as explicit “waitfors” in the PDL. 
For example, the move-cursor motor operator (ml) waits for 
the initiate-move-cursor cognitive operator (cl). Dependency 
lines in a row of CPM-GOMS operators are implemented 
at the next lower level below the code in Figure 2 where the 

Volume No. 4, Issue No. 1 149 



Paper: Controlling Complexity CHI 26XD)L changing the world, changing ourselves 

I (procedure 
(index (slow-move-click ?target) ) 
(step c1 (initiate-move-cursor ?target)) 
(step ml (move-cursor ?target) 

(waitfor ?cl) ) 
(step c2 (attend-target ?target)) 
(step c3 (initiate-eye-movement ?target) 

(waitfor ?c2)) 
(step m2 (eye-movement ?target) 

(waitfor ?c3)) 
(step pl (perceive-target-complex ?target) 

(waitfor ? m 2 ) )  
(step c4 (verify-target-position ?target) 

(waitfor ?c3 ?pl)) 
(step c5 (attend-cursor-at-target ?target) 

(waitfor ?c4)) 
(step wl (WORLD new-cursor-location ?target) 

(waitfor ?ml) ) 
(step p2 (perceive-cursor-at-target ?target) 

(waitfor ?pl ?c5 ?wl)) 
(step c6 (verify-cursor-at-target ?target) 

(waitfor ?c5 ?p2)) 
(step c7 (initiate-click ?target) 

(waitfor ?c6 ?ml)) 
(step m3 (mouse-down ?target) 

(waitfor ?ml ?c7)) 
(step m4 (mouse-up ?target) 

(waitfor ?m3) 
(step tl (terminate) 

(waitfor ?m4) ) ) 

Figure 2. PDL code for the CPM-OMS template shown in 
Figure 1. 

primitive operators are assigned to their resources. That is, 
both the move-cursor operator and the mouse-down operator 
are assign to the right-hand resource; since that resource can 
only do one operator at a time a dependency emerges from 
Apex’s architecture 
Notice in Figure 2 that neither c l  (initiate-movecursor) nor c2 
(attend-target) wait for the completion of any step in this 
template. Ths  is theoretically appropriate because when 
selecting a target with a mouse a skilled user can start to point 
before she starts to look at the target, or start to look before she 
starts to point. The PDL code enforces no dependency between 
these two cognitive operators; resource constraints will 
automatically pick the most appropriate operator at run time. 

Articulating CPM-GOMS Template Interleaving Rules 
By attempting to express CPM-GOMS templates in PDL and 
create a complete model of an HCI task, we were able to 
articulate for the first time reliable rules for appropriately 
interleaving CPM-GOMS operators. These rules depend on 
templates like the one in Figure 2, where the operators 
occupy resources assigned in PDL code below the level of the 
template and inherit priorities from the goal decomposition 
code above the template. 
The details of how these rules work are beyond the scope of 
this paper. However, roughly, they allow a momentarily free 
resource to be seized by an operator from a lower-priority 
template (i.e., later in the sequence) if no operator from a 
hgher-priority template is ready to request it. If the lower- 
priority operator can complete before an operator from a 
higher-priority template requests the resource, that lower- 
priority operator has successhlly interleaved. If it cannot 

complete before the resource is requested, then it is 
terminated and reset and it must re-compete for the resource 
at its next opportunity. 
The decision process about how to interleave is completely 
different for the Apex architecture than for the human 
modeler using MacProject. The modeler uses knowledge of 
the entire timecourse of the task encoded in the critical path 
of the PERT chart, while Apex makes it selections at runtime 
with no foreknowledge of what other operators are waiting 
for resources. Despite the differences in decision-making 
mechanisms, the resulting Apex models interleave operators 
just as MacProjects models do when created by experts in 

Procedure for constructing a CPM-GOMS model with Apex 
The first step in creating a CPM-GOMS model with Apex is 
the same as doing it by hand: create a CMN-GOMS goal 
decomposition. In Apex, this decomposition is formalized in 
PDL code instead ofjust being jotted down on paper or being 
typed into a word processor. As can be seen in Figure 3, the 
syntax of PDL code is sufficiently lightweight that this 
formalization is not a crushing burden. 
Both methods depend on previously set-up templates of 
reusable skills like pointing with a mouse or typing. These 
reusable templates take the form of PERT charts when using 
MacProject and PDL code when using Apex. These 
templates are coded by researchers in cognitive modeling not 
by system designers modeling a particular interface and task 
set. Thus, the psychological science is “built in” to the 
templates by experts in psychology and human modeling so 
that they can be used easily by non-expert modelers. In 
addition, in Apex, the psychologists also provide the lower- 
level code assigning operators to actual and virtual resources, 
h c h  the modeler never need see. 
When the PDL goal decomposition reaches the level of the 
templates, they simply call the appropriate template as a step 
in the PDL code. Next, the modeler runs the model using 
Apex’s GUI, Sherpa (Figure 3). By default, Sherpa produces 
a textual trace of the model, showing the time when each 
operator starts and completes. However, at the press of a 
button, Sherpa converts that trace into a PERT chart. The 
resulting PERT chart contains all the operators, their 
durations, and their dependencies without any hrther input 
from the modeler. No bookkeeping, no deleting or drawing 
dependency lines, no difficult thnking about interleaving. 
In addition, Sherpa has some helpful features tailored to the 
needs of CPM-GOMS modeling. For instance, the PERT 
chart can be shrunk horizontally to see patterns withn the 
model or stretched to zoom in on the information in particular 
operators. It can be toggled to either display in standard 
PERT chart view where the width of each box is determined 
only by how much text must fit into it, or to a view where the 
width of the box is proportional to the time it occupies a 

CPM-GOMS. 

150 Volume No. 4, Issue No. 1 


